日本質量分析学会 第72回質量分析総合討論会
日程
2024年6月10日(月)~ 6月12日(水)
会場
つくば国際会議場 エポカルつくば(茨城県つくば市竹園2-20-3)
  •  
  •  
  •  
  •  

演題概要

シンポジウムセッション

第2日 6月11日(火) 9:35~9:55 B会場(中ホール200)

2B-S-0935
PDF

機械学習を用いた予測EIマススペクトルライブラリーの構築と構造推定方法の開発

(JEOL)
o久保歩窪田梓生方正章長友健治

There are many compounds that are not registered in existing mass spectral libraries. We have developed a qualitative analysis method that combines a machine learning model, soft ionization method, and accurate mass analysis for the purpose of estimating the structure of such compounds. We have improved the accuracy of structural formula estimation using this method by making two improvements. The first improvement is narrowing down the structural formula candidates using the retention index (RI). Before comparing EI mass spectra, we added a process to compare the RI predicted from the structural formula and the measured RI and exclude candidates with large RI differences. The second improvement is to improve the EI mass spectrum prediction accuracy by optimizing hyperparameters and feature vectors. We investigated the effect of each parameter using an orthogonal array and determined the optimal level for each.